## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 4-[(Dimethylamino)methylidene]-2-(4nitrophenyl)-1,3-oxazol-5(4H)-one

## Gilberto A. Romeiro,<sup>a</sup> Carlos M. R. Ribeiro,<sup>a</sup> Solange M. S. V. Wardell,<sup>b</sup> James L. Wardell,<sup>c</sup><sup>+</sup> Seik Weng Ng<sup>d</sup> and Edward R. T. Tiekink<sup>d</sup>\*

<sup>a</sup>Universidade Federal Fluminense, Departamento de Química Orgãnica, Instituto de Química, Outeiro de São João Baptista, 24020-141 Niterói, RJ, Brazil, <sup>b</sup>CHEMSOL, 1 Harcourt Road, Aberdeen AB15 5NY, Scotland, Centro de Desenvolvimento Tecnológico em Saúde (CDTS), Fundação Oswaldo Cruz (FIOCRUZ), Casa Amarela, Campus de Manguinhos, Av. Brasil 4365, 21040-900 Rio de Janeiro, RJ, Brazil, and <sup>d</sup>Department of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: edward.tiekink@gmail.com

Received 14 April 2010; accepted 19 May 2010

Key indicators: single-crystal X-ray study; T = 120 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.065; wR factor = 0.220; data-to-parameter ratio = 14.7.

The title molecule, C<sub>12</sub>H<sub>11</sub>N<sub>3</sub>O<sub>4</sub>, is essentially planar, the r.m.s. deviation for all non-H atoms being 0.068 Å. An intramolecular C-H···N hydrogen bond occurs. The crystal packing is dominated by  $\pi - \pi$  interactions [shortest centroidcentroid distance = 3.6312(16) Å], which lead to supramolecular chains that are linked into a three-dimensional network via  $C-H \cdot \cdot \cdot O$  contacts. The crystal was found to be a non-merohedral twin (twin law  $-1 \ 0 \ 0/0 \ -1 \ 0/0.784 \ 0 \ 1$ ), the fractional contribution of the minor component being approximately 22%.

#### **Related literature**

For the synthesis, synthetic uses and properties of 4-(N,Ndimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives, see: Singh & Singh (1994, 2008); Takahashi & Izawa (2005); Singh et al. (1994); Kmetic & Stanovnik (1995). For the Vilsmeier-Haack reaction, see: Meth-Cohn & Stanforth (1991). For related structures, see Vasuki et al. (2002); Vijayalakshmi et al. (1998). For the treatment of twinned diffraction data, see: Spek (2009).



‡ Additional correspondence author, e-mail: j.wardell@abdn.ac.uk.

## **Experimental**

#### Crystal data

C12H11N3O4 V = 1133.15 (6) Å<sup>3</sup>  $M_r = 261.24$ Z = 4Monoclinic,  $P2_1/c$ Mo  $K\alpha$  radiation a = 9.5313 (2) Å  $\mu = 0.12 \text{ mm}^$ b = 9.5204 (3) Å T = 120 Kc = 13.0349 (4) Å  $0.42 \times 0.38 \times 0.22 \text{ mm}$  $\beta = 106.661 \ (2)^{\circ}$ 

#### Data collection

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.065$<br>w $R(F^2) = 0.220$ | 176 parameters                                                                                                             |
|-------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|
| S = 1.19<br>2581 reflections                          | $\Delta \rho_{\text{max}} = 0.33 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.30 \text{ e } \text{\AA}^{-3}$ |

14210 measured reflections

 $R_{\rm int} = 0.071$ 

2581 independent reflections

2030 reflections with  $I > 2\sigma(I)$ 

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$ | D-H                                      | $H \cdot \cdot \cdot A$ | $D \cdots A$         | $D - \mathbf{H} \cdot \cdot \cdot A$   |
|-----------------------------|------------------------------------------|-------------------------|----------------------|----------------------------------------|
| C5−H5c···N1                 | 0.98                                     | 2.28                    | 3.074 (5)            | 137                                    |
| C5−H5a···O2 <sup>i</sup>    | 0.98                                     | 2.53                    | 3.504 (4)            | 177                                    |
| C5−H5c···O4 <sup>ii</sup>   | 0.98                                     | 2.57                    | 3.259 (5)            | 127                                    |
| C9−H9···O1 <sup>iii</sup>   | 0.95                                     | 2.56                    | 3.304 (4)            | 135                                    |
| $C11 - H11 \cdots O2^{iv}$  | 0.95                                     | 2.45                    | 3.144 (4)            | 130                                    |
| Symmetry codes: (i) r       | $-v \pm \frac{1}{2} = z \pm \frac{1}{2}$ | (ii) - r + 1 - n = 1    | 1 - 7 + 3; (iii) x - | $y \pm \frac{3}{7} = \frac{1}{7}$ (iv) |

 $x, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (ii)  $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$ ; (iii)  $x, -y + \frac{3}{2}, z + \frac{1}{2}$ ; (iv)  $-x+1, y+\frac{1}{2}, -z+\frac{1}{2}.$ 

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT: data reduction: DENZO and COLLECT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

The use of the EPSRC X-ray crystallographic service at the University of Southampton, England, and the valuable assistance of the staff there is gratefully acknowledged. JLW acknowledges support from CAPES (Brazil).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: EZ2209).

#### References

- Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. W. W. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Kmetic, M. & Stanovnik, B. (1995). J. Heterocycl. Chem. 32, 1563-1565.
- Meth-Cohn, O. & Stanforth, S. P. (1991). Comp. Org. Synth. 2, 777-794.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2007). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Singh, K. K. & Singh, R. M. (1994). Indian J. Chem. Sect. B, 33, 232-235.

- Singh, V. K. & Singh, D. (2008). Asian J. Chem. 20, 3349–3352. Singh, K. K., Singh, M. K. & Singh, R. M. (1994). Indian J. Chem. Sect. B, 33, 1119–1122.
- Spek, A. L. (2009). *Acta Cryst.* D65, 148–155. Takahashi, D. & Izawa, K. (2005). Eur. Patent 2004-256811 20041104.
- Vasuki, G., Thamotharan, S., Ramamurthi, K., Ambika, S. & Singh, R. M. (2002). Acta Cryst. E58, 0740-0741.
- Vijayalakshmi, L., Parthasarathi, V., Perumal, P. T. & Majo, V. J. (1998). Acta *Cryst.* C**54**, 1683–1685. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**. Submitted.

supplementary materials

Acta Cryst. (2010). E66, o1450-o1451 [doi:10.1107/S1600536810018635]

## 4-[(Dimethylamino)methylidene]-2-(4-nitrophenyl)-1,3-oxazol-5(4H)-one

## G. A. Romeiro, C. M. R. Ribeiro, S. M. S. V. Wardell, J. L. Wardell, S. W. Ng and E. R. T. Tiekink

### Comment

The preparations of 4-(*N*,*N*-dimethylaminomethylene)-2-aryl-2-oxazolin-5-one derivatives have been reported using the Vilsmeier-Haack reactions (Meth-Cohn & Stanforth, 1991) of acylaminoacetanilides with POCl<sub>3</sub> and DMF (Singh & Singh, 1994; Takahashi & Izawa, 2005; Singh *et al.*, 1994; Kmetic & Stanovnik, 1995). The compounds have been used as precursors of 4-hydroxymethylene-2-aryl-2-oxazolin-5-one, which have been tested for anti-bacterial activities (Singh & Singh, 2008). The crystal structures of 4-(*N*,*N*-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki *et al.*, 2002) and 4-(*N*,*N*-dimethylaminomethylene)-2-(2-nitrophenyl)-2-oxazolin-5-one (Vijayalakshmi *et al.*, 1998) have been reported. We now report the crystal structure of 4-(*N*,*N*-dimethylaminomethylene)-2-(4-nitrophenyl)-2-oxazolin-5-one, (I).

The molecule of (I), Fig. 1, is essentially planar with the maximum deviations from the least-squares plane through all non-hydrogen atoms being 0.157 (4) Å for atom C5 and -0.158 (3) for atom O4; the r.m.s. = 0.068 Å. The sequence of C1–N1, N1–C2, C2–C4, and C4–N2 bond distances of 1.289 (4), 1.398 (4), 1.382 (5), and 1.317 (4) Å, respectively, indicate substantial delocalisation of  $\pi$ -electron density over these atoms. The geometric parameters in (I) match closely those found in the parent compound, namely 4-(*N*,*N*-dimethylaminomethylene)-2-phenyl-2-oxazolin-5-one (Vasuki *et al.*, 2002) and in the 2-nitro derivative (Vijayalakshmi *et al.*, 1998).

The crystal packing is dominated by C–H···O and  $\pi$ – $\pi$  interactions; the N1 atom of the oxazolin-5-one is involved in an intramolecular C–H···N contact that shields this atom from forming intermolecular interactions, Table 1. Columns of molecules orientated along the *b* axis are stabilised by  $\pi$ – $\pi$  contacts with the shortest of these occurring between centrosymmetrically related benzene rings [ring centroid(C7–C12)···ring centroid(C7–C12)<sup>i</sup> = 3.6312 (16) Å for *i*: 1-*x*, 1-*y*, 2-*z*]. The benzene rings also form  $\pi$ – $\pi$  interactions with the oxazolin-5-one rings [ring centroid(C7–C12)···ring centroid(C7–C12)···ring centroid(C7–C12)···ring centroid(C1,N1,C1–C3)<sup>ii</sup> = 3.7645 (17) Å for *ii*: 1-*x*, -*y*, 2-*z*] to form a supramolecular chain, Fig. 2. The chains are connected by a series of C–H···O contacts, Table 1, to form a 3-D network, Fig. 3.

#### **Experimental**

The title compound was prepared as per published procedures (Singh & Singh, 1994; Singh *et al.*, 1994). Physical properties were in agreement with published data. The crystal used in the structure determination was grown from EtOH solution.

#### Refinement

The C-bound H atoms were geometrically placed (C–H = 0.95-0.98 Å) and refined as riding with  $U_{iso}(H) = 1.2-1.5U_{eq}(C)$ . For the treatment of twinned diffraction data, see: Spek (2009). **Figures** 



Fig. 1. The molecular structure of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Fig. 2. A view of the supramolecular chain aligned along the *b* axis in (I) sustained by  $\pi$ - $\pi$  intercations (purple dashed lines). Colour code: O, red; N, blue; C, grey; and H, green.

Fig. 3. View of the connections between chains in (I) with the C–H…O interactions shown as orange dashed lines. Colour code: O, red; N, blue; C, grey; and H, green.

## 4-[(Dimethylamino)methylidene]-2-(4-nitrophenyl)-1,3-oxazol-5(4H)-one

### Crystal data

| $C_{12}H_{11}N_3O_4$            | F(000) = 544                                          |
|---------------------------------|-------------------------------------------------------|
| $M_r = 261.24$                  | $D_{\rm x} = 1.531 {\rm ~Mg~m}^{-3}$                  |
| Monoclinic, $P2_1/c$            | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å |
| Hall symbol: -P 2ybc            | Cell parameters from 2714 reflections                 |
| a = 9.5313 (2) Å                | $\theta = 2.9 - 27.5^{\circ}$                         |
| b = 9.5204 (3) Å                | $\mu = 0.12 \text{ mm}^{-1}$                          |
| c = 13.0349 (4) Å               | T = 120  K                                            |
| $\beta = 106.661 \ (2)^{\circ}$ | Block, red                                            |
| V = 1133.15 (6) Å <sup>3</sup>  | $0.42\times0.38\times0.22~mm$                         |
| Z = 4                           |                                                       |

#### Data collection

| Nonius KappaCCD area-detector<br>diffractometer                         | 2581 independent reflections                                              |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: Enraf Nonius FR591 rotating an-<br>ode                | 2030 reflections with $I > 2\sigma(I)$                                    |
| 10 cm confocal mirrors                                                  | $R_{\rm int} = 0.071$                                                     |
| Detector resolution: 9.091 pixels mm <sup>-1</sup>                      | $\theta_{\text{max}} = 27.4^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$ |
| $\phi$ and $\omega$ scans                                               | $h = -12 \rightarrow 12$                                                  |
| Absorption correction: multi-scan<br>( <i>SADABS</i> ; Sheldrick, 2007) | $k = -12 \rightarrow 11$                                                  |
| $T_{\min} = 0.661, \ T_{\max} = 1.000$                                  | $l = -16 \rightarrow 16$                                                  |
| 14210 measured reflections                                              |                                                                           |

Refinement

| Refinement on $F^2$                                    | Secondary atom site location: difference Fourier map                                                                                                     |
|--------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| Least-squares matrix: full                             | Hydrogen site location: inferred from neighbouring sites                                                                                                 |
| $R[F^2 > 2\sigma(F^2)] = 0.065$                        | H-atom parameters constrained                                                                                                                            |
| $wR(F^2) = 0.220$                                      | $w = 1/[\sigma^2(F_o^2) + (0.0936P)^2 + 1.6594P]$<br>where $P = (F_o^2 + 2F_c^2)/3$                                                                      |
| <i>S</i> = 1.19                                        | $(\Delta/\sigma)_{\rm max} = 0.001$                                                                                                                      |
| 2581 reflections                                       | $\Delta \rho_{max} = 0.33 \text{ e} \text{ Å}^{-3}$                                                                                                      |
| 176 parameters                                         | $\Delta \rho_{\rm min} = -0.30 \text{ e } \text{\AA}^{-3}$                                                                                               |
| 0 restraints                                           | Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008),<br>Fc <sup>*</sup> =kFc[1+0.001xFc <sup>2</sup> $\lambda^3$ /sin(2 $\theta$ )] <sup>-1/4</sup> |
| Primary atom site location: structure-invariant direct | Extinction coefficient: 0.018 (5)                                                                                                                        |

methods

#### Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor wR and goodness of fit S are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > 2\sigma(F^2)$  is used only for calculating *R*factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on  $F^2$  are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x          | у          | Ζ            | $U_{\rm iso}*/U_{\rm eq}$ |
|-----|------------|------------|--------------|---------------------------|
| 01  | 0.3806 (2) | 0.5986 (2) | 0.33548 (17) | 0.0197 (5)                |
| O2  | 0.2556 (3) | 0.4481 (2) | 0.20576 (17) | 0.0239 (6)                |
| O3  | 0.8419 (3) | 1.1001 (3) | 0.6327 (2)   | 0.0324 (6)                |
| O4  | 0.7443 (3) | 1.0746 (3) | 0.76142 (19) | 0.0307 (6)                |
| N1  | 0.2875 (3) | 0.5457 (3) | 0.4711 (2)   | 0.0180 (6)                |
| N2  | 0.0528 (3) | 0.3059 (3) | 0.4441 (2)   | 0.0203 (6)                |
| N3  | 0.7556 (3) | 1.0430 (3) | 0.6733 (2)   | 0.0209 (6)                |
| C1  | 0.3786 (3) | 0.6220 (3) | 0.4393 (2)   | 0.0166 (6)                |
| C2  | 0.2186 (3) | 0.4617 (3) | 0.3831 (2)   | 0.0179 (6)                |
| C3  | 0.2761 (3) | 0.4921 (3) | 0.2958 (2)   | 0.0195 (7)                |
| C4  | 0.1130 (3) | 0.3590 (3) | 0.3735 (2)   | 0.0189 (7)                |
| H4  | 0.0778     | 0.3199     | 0.3038       | 0.023*                    |
| C5  | 0.0939 (4) | 0.3462 (4) | 0.5569 (3)   | 0.0237 (7)                |
| H5A | 0.1378     | 0.2655     | 0.6012       | 0.036*                    |
| H5B | 0.0066     | 0.3768     | 0.5761       | 0.036*                    |
| H5C | 0.1649     | 0.4233     | 0.5691       | 0.036*                    |

# supplementary materials

| C6  | -0.0548 (4) | 0.1947 (4) | 0.4138 (3) | 0.0284 (8) |
|-----|-------------|------------|------------|------------|
| H6A | -0.0780     | 0.1778     | 0.3366     | 0.043*     |
| H6B | -0.1440     | 0.2223     | 0.4317     | 0.043*     |
| H6C | -0.0152     | 0.1086     | 0.4526     | 0.043*     |
| C7  | 0.4765 (3)  | 0.7290 (3) | 0.4994 (2) | 0.0168 (6) |
| C8  | 0.4797 (3)  | 0.7571 (3) | 0.6051 (2) | 0.0184 (6) |
| H8  | 0.4184      | 0.7056     | 0.6375     | 0.022*     |
| C9  | 0.5715 (3)  | 0.8590 (3) | 0.6624 (2) | 0.0185 (6) |
| Н9  | 0.5735      | 0.8794     | 0.7342     | 0.022*     |
| C10 | 0.6608 (3)  | 0.9314 (3) | 0.6135 (2) | 0.0178 (6) |
| C11 | 0.6608 (3)  | 0.9058 (3) | 0.5089 (2) | 0.0173 (6) |
| H11 | 0.7231      | 0.9571     | 0.4772     | 0.021*     |
| C12 | 0.5676 (3)  | 0.8035 (3) | 0.4519 (2) | 0.0175 (6) |
| H12 | 0.5655      | 0.7838     | 0.3800     | 0.021*     |

Atomic displacement parameters  $(\text{\AA}^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.0239 (12) | 0.0203 (11) | 0.0177 (11) | -0.0022 (9)  | 0.0105 (9)  | -0.0010 (8)  |
| O2  | 0.0307 (13) | 0.0242 (12) | 0.0187 (11) | -0.0017 (10) | 0.0100 (10) | -0.0029 (9)  |
| O3  | 0.0323 (14) | 0.0382 (15) | 0.0291 (13) | -0.0147 (12) | 0.0127 (11) | -0.0044 (11) |
| O4  | 0.0397 (15) | 0.0328 (14) | 0.0219 (12) | -0.0061 (12) | 0.0125 (11) | -0.0075 (10) |
| N1  | 0.0195 (13) | 0.0171 (12) | 0.0183 (13) | 0.0003 (10)  | 0.0067 (10) | 0.0004 (10)  |
| N2  | 0.0209 (13) | 0.0163 (13) | 0.0248 (13) | 0.0015 (11)  | 0.0082 (11) | 0.0025 (10)  |
| N3  | 0.0219 (13) | 0.0210 (13) | 0.0195 (13) | 0.0017 (12)  | 0.0056 (11) | 0.0024 (11)  |
| C1  | 0.0193 (14) | 0.0179 (14) | 0.0143 (13) | 0.0046 (12)  | 0.0073 (11) | 0.0029 (11)  |
| C2  | 0.0198 (15) | 0.0172 (14) | 0.0173 (14) | 0.0032 (12)  | 0.0065 (12) | 0.0009 (11)  |
| C3  | 0.0218 (15) | 0.0165 (14) | 0.0207 (15) | 0.0022 (12)  | 0.0068 (12) | 0.0030 (12)  |
| C4  | 0.0222 (16) | 0.0156 (14) | 0.0198 (15) | 0.0042 (12)  | 0.0076 (12) | 0.0024 (11)  |
| C5  | 0.0270 (17) | 0.0235 (16) | 0.0246 (16) | 0.0024 (14)  | 0.0136 (14) | 0.0033 (13)  |
| C6  | 0.0247 (17) | 0.0210 (16) | 0.039 (2)   | -0.0050 (14) | 0.0077 (15) | 0.0059 (14)  |
| C7  | 0.0182 (15) | 0.0145 (14) | 0.0185 (14) | 0.0035 (12)  | 0.0062 (12) | 0.0022 (11)  |
| C8  | 0.0201 (15) | 0.0188 (15) | 0.0184 (14) | 0.0018 (12)  | 0.0089 (12) | 0.0040 (12)  |
| C9  | 0.0215 (15) | 0.0193 (15) | 0.0158 (13) | 0.0052 (13)  | 0.0070 (12) | 0.0030 (12)  |
| C10 | 0.0174 (14) | 0.0152 (14) | 0.0198 (15) | 0.0025 (12)  | 0.0036 (12) | -0.0005 (11) |
| C11 | 0.0180 (14) | 0.0175 (14) | 0.0178 (14) | 0.0023 (12)  | 0.0073 (11) | 0.0035 (11)  |
| C12 | 0.0193 (14) | 0.0184 (14) | 0.0169 (14) | 0.0029 (12)  | 0.0086 (12) | 0.0014 (11)  |
|     |             |             |             |              |             |              |

Geometric parameters (Å, °)

| 1.377 (3) | С5—Н5В                                                                                                            | 0.9800                                                                                                                                                                |
|-----------|-------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1.411 (4) | С5—Н5С                                                                                                            | 0.9800                                                                                                                                                                |
| 1.209 (4) | С6—Н6А                                                                                                            | 0.9800                                                                                                                                                                |
| 1.226 (4) | С6—Н6В                                                                                                            | 0.9800                                                                                                                                                                |
| 1.222 (4) | С6—Н6С                                                                                                            | 0.9800                                                                                                                                                                |
| 1.289 (4) | С7—С8                                                                                                             | 1.394 (4)                                                                                                                                                             |
| 1.398 (4) | C7—C12                                                                                                            | 1.396 (4)                                                                                                                                                             |
| 1.317 (4) | C8—C9                                                                                                             | 1.375 (4)                                                                                                                                                             |
| 1.448 (4) | C8—H8                                                                                                             | 0.9500                                                                                                                                                                |
|           | 1.377 (3)<br>1.411 (4)<br>1.209 (4)<br>1.226 (4)<br>1.222 (4)<br>1.289 (4)<br>1.398 (4)<br>1.317 (4)<br>1.448 (4) | 1.377 (3) C5—H5B   1.411 (4) C5—H5C   1.209 (4) C6—H6A   1.226 (4) C6—H6B   1.222 (4) C6—H6C   1.289 (4) C7—C8   1.398 (4) C7—C12   1.317 (4) C8—C9   1.448 (4) C8—H8 |

| N2—C5               | 1.460 (4)            | C9—C10                               | 1.385 (4)            |
|---------------------|----------------------|--------------------------------------|----------------------|
| N3—C10              | 1.466 (4)            | С9—Н9                                | 0.9500               |
| C1—C7               | 1.450 (4)            | C10-C11                              | 1.385 (4)            |
| C2—C4               | 1.382 (5)            | C11—C12                              | 1.383 (4)            |
| C2—C3               | 1.428 (4)            | C11—H11                              | 0.9500               |
| C4—H4               | 0.9500               | C12—H12                              | 0.9500               |
| С5—Н5А              | 0.9800               |                                      |                      |
| C1—O1—C3            | 105.6 (2)            | H5B—C5—H5C                           | 109.5                |
| C1—N1—C2            | 105.0 (2)            | N2—C6—H6A                            | 109.5                |
| C4—N2—C6            | 120.5 (3)            | N2—C6—H6B                            | 109.5                |
| C4—N2—C5            | 123.9 (3)            | Н6А—С6—Н6В                           | 109.5                |
| C6—N2—C5            | 115.5 (3)            | N2—C6—H6C                            | 109.5                |
| O4—N3—O3            | 123.2 (3)            | Н6А—С6—Н6С                           | 109.5                |
| O4—N3—C10           | 118.1 (3)            | H6B—C6—H6C                           | 109.5                |
| O3—N3—C10           | 118.7 (3)            | C8—C7—C12                            | 120.0 (3)            |
| N1-C1-O1            | 115.2 (3)            | C8—C7—C1                             | 1198(3)              |
| N1 - C1 - C7        | 127.6 (3)            | C12-C7-C1                            | 1202(3)              |
| 01 - C1 - C7        | 117.2 (3)            | C9 - C8 - C7                         | 120.2(3)<br>120.2(3) |
| C4-C2-N1            | 129.6 (3)            | C9—C8—H8                             | 119.9                |
| C4-C2-C3            | 129.5(3)             | C7 - C8 - H8                         | 119.9                |
| N1 - C2 - C3        | 120.9(3)             | $C_{8}^{-}$ $C_{9}^{-}$ $C_{10}^{-}$ | 119.9<br>118.7(3)    |
| 02 - 03 - 01        | 109.9(3)<br>120.4(3) | $C_8 = C_9 = H_9$                    | 120.7                |
| 02 - 03 - 01        | 125.4(3)             | C10-C9-H9                            | 120.7                |
| 02 - 03 - 02        | 104.3(2)             | $C_{11} - C_{10} - C_{9}$            | 120.7<br>122.7(3)    |
| N2 C4 C2            | 104.5(2)<br>131.3(3) | $C_{11} = C_{10} = C_{10}$           | 122.7(3)<br>118.5(3) |
| $N_2 = C_4 = C_2$   | 131.3 (3)            | $C_{11}$ $C_{10}$ $N_{2}$            | 110.3(3)             |
| $N_2 = C_4 = H_4$   | 114.4                | $C_{2} = C_{10} = N_{3}$             | 110.0(3)             |
| $C_2 - C_4 - \Pi_4$ | 114.4                | $C_{12} = C_{11} = C_{10}$           | 110.1 (5)            |
| N2—C5—H5P           | 109.5                |                                      | 120.9                |
| N2—C5—H5B           | 109.5                |                                      | 120.9                |
| H5A—C5—H5B          | 109.5                |                                      | 120.4 (3)            |
| N2—C5—H5C           | 109.5                | CII—CI2—HI2                          | 119.8                |
| Н5А—С5—Н5С          | 109.5                | C/C12H12                             | 119.8                |
| C2—N1—C1—O1         | -0.3 (3)             | O1—C1—C7—C8                          | -179.8 (3)           |
| C2—N1—C1—C7         | 179.1 (3)            | N1—C1—C7—C12                         | -179.3 (3)           |
| C3—O1—C1—N1         | -0.1 (3)             | O1—C1—C7—C12                         | 0.1 (4)              |
| C3—O1—C1—C7         | -179.5 (3)           | C12—C7—C8—C9                         | 0.6 (5)              |
| C1—N1—C2—C4         | 178.8 (3)            | C1—C7—C8—C9                          | -179.5 (3)           |
| C1—N1—C2—C3         | 0.5 (3)              | C7—C8—C9—C10                         | -0.7 (5)             |
| C1—O1—C3—O2         | -178.9 (3)           | C8—C9—C10—C11                        | 0.4 (5)              |
| C1—O1—C3—C2         | 0.4 (3)              | C8—C9—C10—N3                         | 178.2 (3)            |
| C4—C2—C3—O2         | 0.1 (6)              | O4—N3—C10—C11                        | 172.7 (3)            |
| N1—C2—C3—O2         | 178.6 (4)            | O3—N3—C10—C11                        | -7.1 (4)             |
| C4—C2—C3—O1         | -179.1 (3)           | O4—N3—C10—C9                         | -5.1 (4)             |
| N1—C2—C3—O1         | -0.6 (3)             | O3—N3—C10—C9                         | 175.0 (3)            |
| C6—N2—C4—C2         | -178.4 (3)           | C9—C10—C11—C12                       | -0.1 (5)             |
| C5—N2—C4—C2         | -2.4 (5)             | N3-C10-C11-C12                       | -177.9 (3)           |
| N1—C2—C4—N2         | -3.9 (6)             | C10-C11-C12-C7                       | 0.1 (4)              |
| C3—C2—C4—N2         | 174.2 (3)            | C8—C7—C12—C11                        | -0.3 (4)             |

# supplementary materials

| N1—C1—C7—C8                   | 0.9 (5) |             | C1C7C12C11 |              | 179.8 (3) |  |
|-------------------------------|---------|-------------|------------|--------------|-----------|--|
| Hydrogen-bond geometry (Å, °) |         |             |            |              |           |  |
| D—H···A                       |         | <i>D</i> —Н | H···A      | $D \cdots A$ | D—H···A   |  |
| C5—H5c…N1                     |         | 0.98        | 2.28       | 3.074 (5)    | 137       |  |
| C5—H5a···O2 <sup>i</sup>      |         | 0.98        | 2.53       | 3.504 (4)    | 177       |  |
| C5—H5c···O4 <sup>ii</sup>     |         | 0.98        | 2.57       | 3.259 (5)    | 127       |  |
| C9—H9····O1 <sup>iii</sup>    |         | 0.95        | 2.56       | 3.304 (4)    | 135       |  |
| C11—H11····O2 <sup>iv</sup>   |         | 0.95        | 2.45       | 3.144 (4)    | 130       |  |
|                               |         |             |            |              |           |  |

Symmetry codes: (i) x, -y+1/2, z+1/2; (ii) -x+1, y-1/2, -z+3/2; (iii) x, -y+3/2, z+1/2; (iv) -x+1, y+1/2, -z+1/2.



Fig. 1







Fig. 3